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F I L T R A T I O N  O F  A N O N - N E W T O N I A N  F L U I D  

T H R O U G H  A C R A C K E D - P O R O U S  M E D I U M  

V. S. Nustrov and A. V. Plastinin UDC 532.546 

Basic processes of fluid filtration in an elastically compressible cracked-porous material in the presence of an 

initial filtration gradient are considered. 

1. For describing various non-Newtonian systems encountered in the processes of petroleum extraction, the 

viscous-plastic model has become very common. A characteristic feature of such a fluid is that it starts to move only 

when the pressure gradient exceeds a certain critical value, called the initial gradient. The  corresponding law of 

filtration was suggested in [1 ]. Further  development of this trend in filtration was the concern of a great number  of 

investigations, the main ones of which are [2-8 ]. 

Below we consider filtration of a fluid with an initial gradient in a cracked-porous medium represented by a 

set of two mutually penetrating continua [8 ]. Filtration is considered within the framework of the model of [9 ]. 

According to this model, the effective characteristics of the filtration process depend greatly on the stressed state of 

the medium and the liquid pressure in cracks. On the basis of ideas advanced in [1, 9], the equations of one- 

dimensional flow of fluid with an initial gradient are written in dimensionless form as 
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where ~ol -< 1, ~o2_< 1 are the fluid pressures in cracks and blocks; e << 1 is the ratio of the permeabilities of blocks and 

cracks at the initial pressure in the bed pO; j _- 0, 1, 2, depending on the flow symmetry.  The  nonlinear term in Eq. 

(1) characterizes the elastic deformation of cracks, which, according to [9 ], can be substantial, even to the extent  of 

their closure. According to this, the parameter  a, which has the meaning of the ratio between the elastic capacities of 

cracks and blocks, can be of any order,  in contrast to the model of [8 ] of a cracked-porous medium, for which a << 

1. The  characteristic time for Eqs. (1) is equal to unity. In the case of finite region, 77_< 1; for an infinite region, the 

length scale is selected in such a way as to have g = 1 in Eq. (1). It is assumed that the initial gradients for cracks 

and blocks can be different. 

System (1) is meaningful only for ~Ol > 0 when the dimensional pressure in cracks is higher  than a certain 

critical value or. When ~Ol <_0, the cracks are closed, and in this zone the filtration of fluid occurs through blocks in 

the elastic regime. On the unknown boundary between the zones, conjugation conditions are fulfilled. Commercial 

experiments [10 ] demonstrate  that for the wells selected a = (0 .9-0 .75)p  ~ The mass transfer  term m should depend 

on the pressure drop in cracks and blocks and on the initial filtration gradient in blocks G2. We can assume with 

sufficient accuracy that 

t/1 .---, ~ - -  G2, 
l 

where l is the characteristic dimension of a block. It is known that l - 1 0 - 2 _  10-3, G2 _ 1 - 10; thus, the initial gradient 

will exert  a substantial effect on mass t ransfer  between cracks and blocks when ] ~o2--~o 1 1 - 1 0 - 2 - - 1 0  -5.  In this case 
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Fig. 1. Pressure in a collector (a) and the discharge q = q (90o) (b) in a steady- 
state case, g = 1; G1,2 = 0.01 (1) and 0.1 (2); a) ~o 0 --0.2 (solid lines) and 0.8 
(dashed lines). All the parameters in Figs. 1-4 are dimensionless. 

the system of pores-cracks can be regarded as homogeneous and mass transfer between them can be neglected on 

the whole. Therefore, the mass transfer term can be preserved in Eq. (1) in the standard form [8 ]: m=~o2--7,1. 

2. In a steady-state case, neglecting the flow through blocks (e = 0), we obtain from Eq. (1) the equation for 

pressure 

(aq~)31]idq~ = G~d~l, a = q = ~liT3 L t, d~l /o  
1 + (aCp) 3 al j ' ' 

where the derivative (dT/dr/)0 is calculated at the face. For j = 0 (filtration to a gallery) the function ~o = ~o (r/), after 

integration of Eq. (2), is determined in implicit form by 
q~q = 6 (~p) - -  6 ( ~ 0 ) ,  

1 6 (u) = u - -  - -  In (l + u) + 1 l n ( l ~ u + u  z ) -  (3) 
3 6 

3 - 1 / 2  arctg [3 - 1 / 2  ( 2 u - -  1)1. 

An example of calculations with the use of Eq. (3) is shown in Fig. 1. An increase in the initial gradient 

decreases the discharge of the gallery and the pressure in the collector. 
Using Eq. (2) and the boundary conditions $o (0) = $o 0, ~o (1) = 1, we obtain the asymptotics of the process. 

When (a~o)a<<l, which, considering Eq. (2), means a rather small initial gradient 

we find 

G1 ((  (0q)l/01l)o - -  61, 

(1 - n + 

Consequently, in this case the initial gradient does not influence filtration. 

When (a~Ol)a>>l, i.e., when the initial gradient is large enough, Eq. (2) yields ~o=Gff/+~o 0. The steady-state 

process is possible only when ~oo< l--G1.  Then the discharge can be expressed as 

q = 2Gl,p~ (I - - % -  G1)/(1 - -  r (4) 

With ~o0~(1--G1), the dimension of the perturbation zone l ~ l . = ( 1 - - ~ o o ) / G  1 and the discharge q--> 0. 

Moreover, q = 0 when ~o o = 0; consequently, Eq. (4) q = q(~o o) is nonmonotonous. It can be shown that for the pressure 

in the gallery 0 -~  qo 0 = q~. (G1) = 

I+ l ] <" = ~ 2 c o s  + 3 a r c c o s ( G l ~ l )  < I ~ G 1  
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Fig. 2. Optimum seam pressure in the steady-state case (1--Eq. (5); 2--  
calculation by Eq. (3)) as a function of the initial gradient. 

the discharge is maximum. 
Figure 2 shows optimum functions 9O*(G1) calculated from Eqs. (5) and (3). When the initial gradient G1 

decreases, the curves differ substantially, which is associated with violation of the condition (a9ol)3>>1. We note, 

however, that at small enough values of 9O0 it is necessary to take into account the flow through blocks and this will 

change the form of the left part of curve 2. 
3. In the case of unsteady filtration, we consider approximate solutions of Eqs. (1). There is no information 

in the literature concerning the relationship between the initial gradients G1 and G2. Physically, the most real case 

is that when G2 > GI. Taking into account this uncertainty, we will consider below the general case of different values 

of the initial gradients G1 and G2. 
At a prescribed pressure 9o0 on the gallery we have 

% = % q- B~rl/Ii q- yi~l~/li, 0 ~ r I ~.~ it (t), (6) 

~i = 2(1 - -  % ) - -  Gilt, yt = % ~ l -[- Gilt (i = 1, 2), 

where li(t) are perturbation fronts propagating through cracks and blocks. At r]=/i, the conditions 9oi=l, 

09ol/0r/=G1 are fulfilled. 

The functions li=li(t) are found from the second integral relations corresponding to Eqs. (1): 

d (hll] ) P1 q- f,  d (h2l~) F2 f, 
dt dt 

F.a ----- 8g(G,,l~-- 1 q-{P0), hi = (%-- -1  - -GiQ)/12 ,  

f = (t~ - -  t ~ ) / 2  + (q,,,/2 + fk,/a + ,~,,d4) 1~ - -  

- - ( % / 2  -t- p~/3 -~ y,/4) l~. 

Taking into account Eq. (6), we determine the discharge 

q & P  ~ 

cgq &l  o 

ll , l~ 

(8) 
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In the l inear case, when cracks are deformed slightly (the model of [8 ]), we should assume that ~Ol 3= 1 in 

Eqs. (1) and, correspondingly,  that ~oo3=1 in Eq. (8). The  first term in Eq. (8) is the discharge of the gallery in a 

cracked bed. For  brevity, we designate the media as LM (linear medium),  CM (cracked medium) and NM (nonlinear 

medium).  

On the basis of Eqs. (6)-(8) we can conclude that the main conclusions derived in [2, 4 ] concerning fluid 

filtration with an initial gradient in a porous collector are applicable to all the above-indicated media: NM, LM and 

CM. 

Actually, from Eqs. (6)-(8) it follows that at small times when 

l i ((  I .  -'= rain (/1., lo-.), [1.  = ( l  - -  (p0)/Gs ([ == 1, 2), 

the initial gradient does not influence the process. When li--'li, the fluid flow through the i-th phase qi tends to zero, 

and pressure distribution (6) tends asymptotically, t--, oo to the limiting one 

% .  =: % -1- (1 --%) rl/li.. (9)  

We consider in more detail the indicated asymptotics. 

In the case when li<<l., Eq. (7) has the solution 

l =u+ov, t?, . . . .  a u  + to, 

u = (d~,-- a&) (1 - -  exp (st))/(1 q- a) 2, do- = 12sg, (10) 

r~ --  (d~ -1- do)//(1 q- a), d~ = 3g (1 --- q~0) ~ (I - -  q~0) =x, s = - -  a - t  (1 @ a). 

We elucidate the character  of the fall of the discharge in an NM at small times as a function of the parameter  a. From 

Eqs. (8) and (10) with a << 1 (rapid filtration [11 ]) we find that 

q ~. q~ (q)0) [1 + t - - e x p ( - - t / a ) ] - l / 2 ,  

q' (q'0) = 2,p~ (1 - -  (p,,):~/2 [3g (1 - -  @ ) ] - ' / 2 ,  

(11) 

and for a >> 1 

q ~ q9 (~o) (a/t) ~/2. (12) 

As the parameter  a increases, filtration slows down [11 ]. When a >> 1, filtration is ra ther  slow, so that cracks 

cease to play the part of basic channels and the collector acts as homogeneous. Therefore,  the character  of Eq. (12) 

q - t -1 /2  is the same as for a porous collector. 

Comparing Eqs. (11) and (12) we can find that at small times the discharge will fall more rapidly when a<< 

1. 

The  function ~0(~o0) has a maximum at TO = 3 /4 .  This agrees with the results of s teady-state  filtration of a 

Newtonian fluid [12 ]. 

The  asymptotic character  of the process with li-->li, can be ascertained in the following way. We sum up Eqs. 

(7) and write the result in the form 

d (ahll~ + h~[~) t' " = - -  qld~l-- .t q2d~l. (13) 
dt ! o 

When l i ~ l i .  , it follows from Eq. (7) that hi ,  h2--,2 (To- - I ) ,  while the r ight-hand side of Eq. (13) tends to zero. From 

this it follows that when li~li., the time t--,~. 

The  limiting overall extraction of fluid in the case of NM is determined from the balance condition 

l~, 12. 
QNMg /TZ~ .t" ( t -  q)l,) (1 "q- 'Viq)l,) d% ] -q- BZ~ 'V2. I' (1 --- rpo-,) d% 

0 0 (14)  
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,~ = ( p O  o ) f ( 2 ' ,  ~ = (po - -  o) (]<2 ' + , ~ ' ) .  

In reality, p ~  MPa, Kp, K m - 1 0 2 - 1 0 3  MPa; consequently, v 1 << 1, v2 << 1. Since usually for 

cracked-porous collectors m~ m~ then the term involving the coefficient Vl in Eq. (15) can be neglected. Taking 
into account Eq. (9) we find 

o 

2 ~ + G2 " 

Assuming for LM that cracks deform in the same way as the pores of blocks, we obtain 

QLM~ (1--q~~ ( ' ' ~ ' I ' 1 2  G1 -]- ,n~ vo )G___~, " 

Comparing the fluid volumes extracted from NM and LM, we find that the expression 

QNM__.QLM__ - (I --(p0)2(1 .... %) m~ > 0  
2GI 

is always positive, since Iv 1 I < 1. 

In the case of CM, the extraction QCM=m~(1--~o0)2/2G1 <QNM. 

The dimension of the draining zone in cracks ll.=(1--~oo)/G1 is the same for all the media: NM, LM, CM. 

However, the speed of propagation of a perturbation for finite values of t in the media indicated will naturally be 
different, as confirmed by numerical calculations. Similarly to the case of a Newtonian fluid [11 ], the greatest speed 

of propagation of a perturbation is in LM, and the least in CM. 

Let us consider putting into operation a well with the constant discharge q. The pressure profiles are 
approximated by the expressions 

(15) 

where the coefficients fli a r e  determined from the conditions in the well 

3 

~1 = ~10, q = ~0 (fPiarPl!dll -t- sO~pzlOq), ~Pl = ~P,,. (16) 

Equations for the perturbation fronts It=It(t), with the flow through the blocks being neglected, are written 

in the following form: 

ad61/dt = - -  61 + 6~ -k 12gq, d&/d!  = 61 - -  62, 6i = (~i -{- 2G~ll) I~, (17) 

and they have the solution l+0xp(st>l+  )' 
(18) 

We obtain the asymptotics of the process of pressure fall in the well. At small times t << t , ,  when 

G,I, (( ~,, (19) 

the initial gradient does not influence filtration, and the pressure in the well is determined in implicit form by the 
expression 

% ~ 1 -{- [~,(1 + ln(~o/lI)), I1 ~(6~/~1)~/2, [~1 ~qhP ~ ,  (20) 

where the functions ll(t), ill (t) are found from Eqs. (16) and (17). 
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Fig. 3. Overall extraction of fluid, g-- 10; G1,2--0.1; a = 10: NM (1); CM (2), 
LM (3); a=  1: NM (4); G=0.2,  a = 1: NM (5). 

Practical calculations of the asymptotics are fairly simple and are performed as follows. On each time step t 

(t grows from zero) the value of the function t~ 1 (t) is determined from Eq. (18), and then the pressure in the well 

~o0(t) is found from Eq. (20); thereafter condition (19) is verified. If this condition is complied with, the calculation 

is continued. 
At large enough times t >> t., when Glll>>fll, the pressure in the well varies according to the law 

% ~ 1 - -  G:t  1 + ~: In (~1o/I:), t~ ~ 6: (2G1)-:, ~: ,~ q/q~ao - -  GI~ o. (21) 

From Eq. (18) it follows that with growth of time the collector operates as homogeneous, since 61 ~ t~2 ~ c t ;  

therefore Eq. (22) can be represented as 

(9o ~ 1 - -  G : q  + (q/q~ - -  G1~1o)In (~o/q) ,  t~ = ct (2G:) -1. 

Consequently, at large times ~o 0 -(G12qt) ~ ,  which coincides with the results for a porous collector [2, 4 ]. 

The time instant t = t. satisfies the equation 

q~po 3 (t,) ~ [a~61 (t,)l '/3. 

Examples of numerical calculations with use of system (1) and the above-indicated asymptotics are given in 

Figs. 3 (filtration toward the gallery) and 4 (filtration toward the well). It is adopted in the calculations that e -- 10 -2. 

The value of the dimensionless initial gradient G was selected in the following way. In Eq. (1), G = GoM/(p~ 

where M is the characteristic dimension of the system; Go is the dimensional initial gradient. According to [4 ], under 

the bed conditions the value Go- 10a-104 N/m is possible. Practically, p ~  MPa, M-102-10 a m; 

consequently in Eq. (1) G -  10-2-10. 
The greatest overall volume of the fluid (Fig. 3) is extracted from NM and the smallest from LM. The overall 

extraction fxom NM increases with growth of the ratio a between the elastic capacities of cracks and blocks and with 

decrease in the initial gradient. 
As the discharge and the initial gradient grow, the pressure falls more rapidly in the well and correspondingly 

the time from the start of the process to the closure of cracks decreases (Fig. 4). When the pressure in the well 

decreases to a certain value, further closure of cracks occurs almost instantly, and a "two-layer" character of the 

curves is clearly seen. For small enough values of q, G, the process of filtration stabilizes with time, and no closure 

of cracks takes place (curve 1). As follows from Fig. 4 b, there is also no closure of cracks when fluid is extracted with 

the initial gradient G1,2 -- 0.01 and with the discharge q < 0.046. 
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Fig. 4. Pressure drop in the well (a) : q -- 0.021 (1), 0.036 (2), 0.043 (3) and time 
of closure of cracks (b): a -- g -- 10, G1,2 = 0.01 (solid lines) and 0.1 (dashed 
lines). 

N O T A T I O N  

~o, r/, t, dimensionless pressure, coordinate, time; r/0, well radius; p, pO, dimensional pressure and its initial 

value in the bed; a, critical pressure; a, ratio of elastic capacities of cracks and blocks; e, ratio of permeabilities of 

cracks and blocks under pressure; g, parameter of system (1) ; G, Go, dimensionless and dimensional initial gradient; 

q, Q, discharge and overall extraction of fluid; To, pressure in a well; l, dimension of a perturbation zone; M, 

characteristic dimension of a system; m, porosity; Kp, Kin, elastic constants of fluid and blocks. Subscripts: 1, 2, refer 
to cracks and blocks, respectively. 
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